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A B S T R A C T   

Smart skins and smart textiles equipped with strain sensors for motion detection are of prime significance for 
personalized health monitoring, lifestyle and fitness applications. Yet, the dependence of these devices on wired 
power supplies and rigid batteries limits their use in everyday settings. Here, we report self-powered and highly 
elastic strain sensors withstanding stretching to 200% for monitoring the human motion. The sensor is based on a 
torsional-spring-shaped coil of liquid metal wound around an elastomeric tubing and equipped with a tiny piece 
of a magnetic ring. The energy is harvested from the body motion relying on the Faraday’s law of electromag-
netic induction when the coil is exposed to a time-varying magnetic field of the magnetic ring upon the me-
chanical deformation of the strain sensor. The max short-circuit current is 2 mA, which is much higher than 
previous work, and the peak power of our device is 20 µW, sufficiently high to drive conventional low-power 
electronics. We demonstrate the application potential of our sensor for wearable electronics for monitoring 
the motion of arms and legs during fitness workout and riding bicycle. The sensor can measure motion of fingers 
and wrist for health applications and establish wireless control of robotic hands.   

1. Introduction 

Wearable electronics have made tremendous progress owing to their 
great application potential in personalized health-monitoring, intelli-
gent robotics, smart displays, energy harvesting and storage [1–9]. In 
particular, health monitoring relies on the logging and analysis of 
physiological indicators and has already proven to be beneficial to su-
pervise and guide rehabilitation treatment, e.g. of finger joints [10], or 
curing of diseases, e.g. Parkinson’s diseases [11–14]. This success 

stimulated a broad use of health monitoring devices in portable gadgets 
like smartphones and smartwatches. 

Flexible electronic technologies for health monitoring [15–18] 
address key shortcomings of the state-of-the-art portables in terms of 
bulkiness, motion constraint due to rigidity, and energy inefficiency. 
Soft, stretchable, and skin-compliant electronics offer the highest degree 
of personalization and comfort upon continuous use in everyday activ-
ities [19–22]. There are different families of stretchable functional ele-
ments, which are developed for monitoring of physiological indicators 
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including temperature [23], biopotential signals [24], heart rate [25], 
blood pressure [26], oxygen level [27], sweat [28]. 

Stretchable strain sensors [29,30] emerged as the key functional 
element of skin compliant health monitoring systems due to their broad 
applicability for human motion monitoring [31], cardiology [32], 
neurology [33], and hematology [34]. Current laboratory demonstra-
tions of stretchable strain sensors rely on wired power supplies, which is 
hardly acceptable for skin-compliant portable electronics [35]. A typical 
approach to realize autonomous yet limited in time operation of strain 
sensing devices is based on the integration of the sensor with a battery 
[36–38]. However, the use of batteries increases not only bulkiness but 
also the overall complexity of the device and manufacturing process. 
Energy harvesting from body motion is considered the most promising 
technology to realize self-powered stretchable electronics and in 
particular strain sensors. Indeed, human motion activities contain vi-
bration energy in abundance, which can be harvested by various 
transduction mechanisms [39–41] (Table S1). In this respect, there are 
demonstrations of wearable piezoelectric triboelectric nanogenerators 
(TENG) based on the coupling effect of contact electrification (CE) and 
electrostatic induction. Ultrathin ZnO p–n homojunction films can 
convert flexor tendon’s movement into distinguishable electrical signals 
that can be further used to recognize gestures [42]. Patterned Ag-na-
nofiber electrodes [43] and polytetrafluoro-ethylene nanocomposite 
membrane [44] are applied for detecting and spatially mapping trajec-
tory profiles and enable water wave energy harvesting and subtle mo-
tion monitoring in water. Still, the high output impedance of TENG and 
low output current makes them hardly usable in low impedance sensor 
applications including strain sensors, which are typically based on 
current-driven stretchable conductors [45–50]. Recently, stretchable 
inductive coils started to gain attention for the realization of 
self-powered mechanically flexible and even elastic resistive sensor 
devices due to the appealing possibility to provide current for powering 
the sensors [51,52]. The most promising strategy to realize long-term 
stable highly stretchable strain sensors relies on the use of liquid 
metals. Liquid metals are broadly used for smart wearable applications 
and already include exciting demonstrations of stretchable circuits [53], 
antennas [54], strain and stress sensors [55] to name just a few. 

Herein, we report a self-powered stretchable strain sensor equipped 
with a spiral coil based on liquid metal (LM). Being exposed to a mag-
netic field of a permanent magnetic ring in its proximity, the coil har-
vests electrical energy for the strain sensor relying on the Faraday’s law 
of electromagnetic induction. LM spiral coil is fabricated on a twisted 
thermoplastic elastomeric tube (TPE). The sensor exhibits stretchability 
of 200% and the LM coil retains its adherence with the TPE tube even at 
this extreme stretch condition. Energy conversion takes place when the 
LM spiral coils is mechanically deformed in the time varying magnetic 
field. We experimentally address the effect of the magnetic field (di-
rection and gradient) on the performance of the sensor. The energy 
harvesting performance is significantly enhanced when operating in 
gradient magnetic fields reaching remarkable output of 2 mA short- 
circuit current (Isc), which is sufficient to supply low-power elec-
tronics. The use of a cobalt-based amorphous wire (CoAW), inserted 
inside the TPE tube, allows to further boost the energy conversion effi-
ciency by 33%. The sensor offers high output in response to a human 
motion, such as finger or wrist bending and hand trembling. With the 
magnetic field provided by a small permanent magnetic ring, the sensor 
system is portable and fully autonomous. We demonstrate the applica-
tion potential of our self-powered strain sensor for wearable electronics 
including smart textiles and electronic skins for monitoring the motion 
of fingers, arms, and legs. The high short-circuit current enables the 
device to transmit signals wirelessly to control a robotic hand. The 
wearable sensor can be readily used for lifestyle, fitness and health ap-
plications including remote operation, rehabilitation workout and 
monitoring of the Parkinson disease. 

2. Results and discussions 

2.1. Preparation of self-powered stretchable strain sensors 

The self-powered stretchable strain sensor consists of a hollow TPE 
tube with an outer diameter of 1 mm, LM spiral coil, and Co-based 
amorphous wire (CoAW; CoFeSiCr alloy). The TPE tube possesses 
excellent stretchability and serves as a stretchable substrate for the 
sensor. To fabricate spiral patterns, the TPE tube was twisted along its 
longitudinal axis (Fig. 1). The LM stripe made of Galinstan, a eutectic 
alloy composed of gallium, indium, and tin with 1.5 Ω/cm resistivity 
was coated on the top side of the twisted TPE tube. Upon releasing the 
twisted TPE tube, the LM layer adopted the shape of a spiral coil wound 
along the tube axis (Video S1). The thickness and width of the LM coil 
depends on the number of turns of the TPE tube (Fig. S1). Furthermore, 
the hollow TPE tube can accommodate in its interior a CoAW with a 
diameter of 30 µm. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106754. 

Due to its high magnetic permeability, the CoAW allows to enhance 
the sensor signal output. As the final fabrication step, the entire sensor 
assembly was encapsulated using polydimethylsiloxane (PDMS) elas-
tomer. The entire sensor is mechanically soft; it can be bent (Fig. 2a), 
twisted (Fig. 2b) and stretched (Fig. 2(c, d)). This allows to use these 
stretchable strain sensors as a functional element of skin compliant 
electronics (Fig. 2e). In an external magnetic field, the change of the coil 
geometry while stretching or bending results in the change of the 
magnetic flux density in the coil leading to the induced electrical voltage 
according to the Faraday’s law of electromagnetic induction. 

2.2. Characterization of self-powered stretchable strain sensors 

We estimate the Young’s modulus of the TPE tube to be at the level of 
0.8 MPa (Fig. S2). The low Young’s modulus of the material allows us to 
achieve rather large elongation at low force as required for on-skin and 
wearable electronics applications. The sensor’s performance depends on 
the number of windings of the LM spiral coil per unit length, which can 
be tailored by varying the number of turns applied upon the initial 
twisting of the TPE tube (Fig. S3). Instead of operating with the number 
of windings, it is more convenient to perform analysis of the device 
performance by considering the angle α, which is formed by the LM 
stripe with respect to the long axis of the TPE tube (Fig. 2f). If α is big, 
then the number of turns per unit length will be small and vice versa. As 
shown in Fig. 2f, for α < 100◦, the sensors’ resistance changed minutely 
even when stretched up to 200%, which is beyond the typical stretching 
of less than 100% of the human skin [56]. When the angle α is increased 
beyond 100◦, the sensor reveals a more significant resistance change 
upon stretching. We note that for all the samples, the resistance initially 
decreases but after reaching a certain critical strain value it starts 
increasing. For the sensor with α < 100◦, the critical strain value is 
about 100%. This value gradually decreases to 0 with the increase of α to 
120◦. Qualitatively, the behavior can be understood in terms of the 
deformation of the liquid metal layer. During the stretching process, 
when the angle α is close to 90◦, the main deformation of the liquid 
metal is the increase of its cross-sectional area. Thus, the resistance 
decreases. As the angle α increases, the main deformation of the liquid 
metal becomes the length increment, resulting in the resistance increase. 

If α approaches 90◦, the sensor’s resistance becomes stable and the 
largest number of windings in the spiral coil can be achieved (Fig. 2f). 
The latter is of major relevance for the energy harvesting relying on 
electromagnetic induction processes. Therefore, this sensor geometry is 
used in the further experiments. Fig. 2g shows the optical microscopy 
images of the LM spiral coil with α = 92◦ (see also Fig. S4a and Fig. S4b 
revealing the coil before and after stretching to 200%). The LM coil 
adheres well to the TPE tube even under these extreme stretch condi-
tions (Fig. S4b), which confirms the extended operating range of 
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mechanical loading for our sensor device. 

2.3. Energy conversion efficiency of stretchable LM spiral coils 

According to the Faraday’s law of electromagnetic induction, when 
the spiral coil is stretched in an external magnetic field, a corresponding 
voltage will be generated in the LM spiral coil. We brought the strain 
sensor (α = 92◦) to a mechanical vibration to attain the efficiency of 
energy conversion. To evaluate the energy harvesting performance, we 
monitored the output of the sensor attached to a shaker, which is driven 
at 14 Hz signal of different wave form (triangular, sine, and pulse),  
Fig. 3a. In these experiments, the sensor is subjected to a homogeneous 
magnetic field of 2 kOe and exposed to a 4% applied strain. The sensor 
can operate at any of these excitations, but the highest energy conver-
sion efficiency is observed for the case, when the sensor is driven with a 
triangular wave. This finding can be explained by considering that the 

output of the sensor depends on the rate of the magnetic flux change yet 
by taking into account the relaxation time of the elastomer. Indeed, in 
the case of a pulse excitation, the flux change appears to be not large, as 
the elastomer cannot be stretched substantially during a very short in 
time excitation. In this respect, it is of advantage to increase the duration 
of the pulse to allow the elastomer to follow the actuator in full. In this 
respect, for the mechanical properties of our elastomer, we found out 
that the triangular wave excitation provides a larger output in the in-
flection points, which leads to the maximum total output voltage. 
Therefore, this wave form is used for further experiments. 

The effect of stretching and the vibration frequency on the energy 
conversion efficiency of the self-powered sensor is shown in Fig. 3b. 
When the device is exposed to a uniform magnetic field with the strength 
of 2 kOe and vibrates at low frequency of 2 Hz, its output rises from 15 
μA to 60 μA when the strain increases from 4% to 40%. Fig. 3c and 
Fig. S5 shows the current output of our sensors when actuated at 

Fig. 1. Self-powered stretchable strain sensor 
based on LM spiral coil. a) Identify the hand 
tremor by a self-powered stretchable strain 
sensor for health monitoring. b) Schematics of 
the fabrication steps to realize stretchable strain 
sensor based on LM spiral coil. First, the TPE 
tube is twisted and then coated with a LM 
stripe. After releasing the twisted TPE tube, LM 
stripe adopts a spiral shape. Optionally, CoAW 
can be inserted in the hollow TPE tube to 
further enhance the energy conversion perfor-
mance. Finally, the whole sensor assembly is 
encapsulated in PDMS elastomer.   

Fig. 2. Self-powered stretchable strain sensor 
based on LM spiral coil. Motion monitoring by 
the self-powered stretchable strain sensor. a–d) 
The sensor is soft and elastic. It can be easily a) 
bent, b) twisted or stretched (compare panels c) 
and d)). e) Photograph showing the sensor 
applied to the finger. Permanent magnetic ring 
is indicated as well. f) Normalized resistance 
change of the sensors having various coil angles 
α as a function of the applied tensile strain. g) 
Optical and magnified images at a coil angle of 
92 degrees.   
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different frequencies. The sensor’s output increases strongly with the 
vibration frequency and reaches 1 mA at 20 Hz under a moderate strain 
of 4% (Fig. 3c). 

The magnetic field strength and its spatial profile plays an important 
role in the efficiency of the energy conversion. We studied the energy 
harvesting performance of the device by applying uniform and gradient 
magnetic fields. The magnetic field gradient is characterized in Fig. S6. 
The strain sensor was subjected to the magnetic field of various mag-
nitudes, under a vibration frequency of 20 Hz (Fig. 3d). The output of 
the sensor increases with the increase of magnetic field strengths. The 
use of gradient instead of homogeneous magnetic fields boosts the en-
ergy conversion efficiency up to 650%. The maximum ISC of the sensor 
reaches about 1.5 mA under the gradient magnetic field of 2 kOe. In the 
uniform magnetic fields, the sensor output is only related to the change 
in the coil cross-section upon stretching. In addition to this effect, for 
gradient magnetic fields, the spatial change of the magnetic field 
experienced by the coil during the stretching process does additionally 
increase the sensor output. As a result, a substantially enhanced energy 
harvesting performance, when operated in a gradient magnetic field, is 
of strong advantage as this highlights the potential to use it being driven 
with a permanent magnet. In this way, portability and autonomous 
operation can be readily achieved. 

To assess the performance of the sensor in an arbitrarily oriented 
magnetic field, we investigated the effect of the magnetic field direction 
on the energy conversion by exposing the sensor to the magnetic field of 
1 kOe oriented perpendicular and parallel to the main symmetry axis of 
the spiral coil. The strain sensor was stretched to 4% and vibrated at a 
frequency of 15 Hz. The corresponding output of the sensor is shown in 
Fig. S7. Due to the torsional spring geometry of the LM coil, the sensor 
can operate even in the unfavorable case, when the magnetic field is 
applied perpendicular to the cross-section area of the coil. To further 
enhance the energy conversion efficiency of the device, we inserted 
CoAW inside the hollow TPE tube. Benefiting from the high permeability 
of the amorphous wire, the distribution of the magnetic field changes, 
increasing the number of magnetic induction lines passing through the 
coil cross-section. As shown in Fig. 3e, the output of the sensor with the 
CoAW core reaches up to 2 mA, which is about 33% higher than the 
output of the sensor without the CoAW. This is 2 orders of magnitude 
higher than values reported for other biomechanical energy harvesters 
(Table S1). In this respect, the peak power of our device can be as high as 
20 µW. The simulation results (Fig. S14, S15) also show that the amor-
phous magnetic wire can significantly change the magnetic flux nearby, 
resulting in a large increment of the output of the sensor. Furthermore, 
we note that simulations show that the increase of the bending angle can 

Fig. 3. Energy harvesting performance of the 
stretchable LM spiral coil. a) The short-circuit 
current signal (ISC) of the stretchable spiral 
coil obtained upon application of periodic 
triangular, sine, and pulse vibrations (frequency 
= 14 Hz) under a uniform external magnetic 
field of 2 kOe and applied strain of 4%. b) ISC 
and VOC (open circuit voltage) of the stretch-
able spiral coils measured at different degree of 
stretching when the device is exposed to a 
magnetic field of 2 kOe and vibrated at 2 Hz. c) 
Isc of the device, exposed to the uniform and 
gradient magnetic field, dependent on the vi-
bration frequency when the sensor is subjected 
to 4% tensile strain and exposed to a magnetic 
field of 2 kOe. d) Effect of the uniform and 
gradient magnetic field on the output of the 
device when it is subjected to 4% applied strain 
and vibrates at 20 Hz. e) Output of the 
stretchable LM spiral coil with and without 
insertion of the CoAW, evaluated under 2 kOe 
magnetic field, 4% applied strain, and 20 Hz 
vibration frequency.   
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also significantly enhance the output, which is again consistent with our 
experimental results. With this performance, our device successfully 
addresses one of the major issues of biomechanical energy harvesters 
related to a low output current. In this respect, our work opens exciting 
perspectives of using conventional electromagnetic induction based 
harvesters for wearable sensors, which are conditioned using low-power 
electronics. 

2.4. Applications of self-powered stretchable strain sensor 

To investigate the potential of the self-powered stretchable strain 
sensor for electronic skin applications, we mounted our sensor on the 
forefinger. To assure quantitative characterization, the finger was 
located in the spatially uniform magnetic field of 2 kOe. The sensor 
readily detects the finger movement and its output increases with the 
increase of the bending angle (Fig. 4a). Similarly, the sensor can be used 
to detect motion of other body parts, as exemplarily shown with the 
monitoring of the wrist motion (Fig. 4b). The sensor’s output changes 
correspondingly (positive or negative) with the upward or downward 
wrist joint bending, which is attributed to the increase or decrease of the 
magnetic flux, which occurred due to the bi-directional bending. We 
note that in these experiments the energy to power the sensor is har-
vested from the body motion only, which confirms the significant 
application prospect of this technology in the field of wearable devices. 

The self-powered sensor on the forefinger can be applied to detect 
different degrees of hand trembling. When the hand trembles periodi-
cally, like in the case of the Parkinson’s disease, the periodic change of 
the sensor’s output occurs, which is shown in Fig. 4c. The sensor’s 

output changes when the hand trembling occurs at low (about 1 Hz), 
medium (about 2 Hz), and fast (about 5 Hz) speeds. Our self-powered 
strain sensor successfully detects the amplitude and speed of the hand 
trembling and converts the vibrational energy of the hand into electrical 
energy. This signal can be used for a wearable healthcare system to 
detect the abnormal hand tremor, deviant finger and wrist movements. 

For everyday operation, the sensors should be portable. In this case, 
bulky electromagnets cannot be used for excitations. Instead, the sensor 
should be able to work when exposed to a magnetic field of a tiny per-
manent magnetic ring. This assures portability of the entire sensor 
platform and makes it entirely autonomous as neither the sensor nor the 
permanent magnet needs any additional energy source. In the following 
demonstrations (Fig. 5), we use a small permanent magnetic ring to 
provide a magnetic field of about 80 Oe only at the sensor location that 
is already sufficient for the sensor to monitor body movements. Fig. 5a 
and Video S2 show the stretchable self-powered device applied to the 
finger. As the finger bends downward and upward and returns to the 
initial position, the output voltage of the sensor changes from being 
negative to positive. To demonstrate applicability in the smart textile 
technologies for fitness and lifestyle applications, we fixed the sensor on 
the cloth, as shown in Fig. 5b and c. As a component of smart textiles, the 
sensor can accurately sense the bending of the arm and correctly cap-
tures the direction of bending (Fig. 5b and Video S3) as well as detects 
the bending of the leg when riding a bicycle (Fig. 5c and Video S4). 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106754. 

To show the advantages of the high current provided by our self- 
powered device, we connect the sensor to an inductive coil (Fig. 6a). 

Fig. 4. Use of the self-powered stretchable strain sensor for monitoring the hand motion. Sensor’s output signal acquired during a) finger bending, b) wrist bending, 
and c) hand trembling at slow, medium, and fast speed. In these demonstrators, the energy harvesting is done in a homogeneous field of 2 kOe. 
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When the finger is bent, the current provided by the harvester changes 
resulting in the change of the magnetic field generated by the inductive 
coil. We use a magnetic field sensor to detect the change of the magnetic 
field and input it to a computer to control the movement of a robotic 
hand wirelessly. The distance of the magnetic sensor from the inductive 
coil is 0.5 cm. When the finger is bent or returns back to the initial states, 
the magnetic field detected by the magnetic field sensor also changes 
(Fig. 6b). We use this magnetic field signal to realize a wireless signal 
transmission and control a robotic hand to perform the corresponding 
movements (Video S5). The use of a more sensitive signal detection unit 
for longer-distance signal transmission enables integration of the 
inductive coil directly into our sensor. This could further facilitate 
integration of our sensors and harvesters and make the entire system 
more efficient. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106754. 

3. Experimental section/methods 

3.1. Preparation of the LM spiral coil 

High purity metals Gallium, Indium, and Tin (99.99%, Beijing 
Founde Star Sci. & Technol. Co., Ltd) were mixed in the ratio of 
68.2:21.8:10 by mass. Then the mixture was heated and stirred at 60 ◦C 
for 30 min to obtain LM Galinstan alloy (Ga68.2In21.8Sn10). Afterward, 
the prepared Galinstan and the micron-sized copper powder was mixed 
in a mass ratio of 9:1 and the resultant mixture was heated and vac-
uumed several times to remove air bubbles. The copper powder added in 
the liquid metal can form semi-liquid metal (Cu-EGaIn), which increase 
wettability and adhesion. This high adhesive mixture was further used to 
prepare LM spiral coil on the TPE tube. 

3.2. Preparation of the strain sensing element 

Thermoplastic elastomeric tube (TPE, Ningbo ELasTech Co., Ltd, 
China) of 50 mm length, 0.5 mm inner diameter, and 1 mm outer 
diameter was twisted along its longitudinal axis by using a winding 
machine. The angle with the axis of tube (α) depends on the number of 
windings of the TPE tubing. LM was coated on the top side of the twisted 
TPE tube. CoAWs made of CoFeSiCr alloy of 30 µm diameter were 

Fig. 5. Self-powered stretchable strain sensor based on stretchable LM spiral 
coil for smart wearables. In these demonstrators, the sensor is exposed to the 
magnetic field of a permanent magnetic ring, integrated next to the sensor. The 
strength of the magnetic field is 80 Oe at the sensor location. The entire sensor 
system is fully portable and autonomous. a) Smart skin applications: The sensor 
is applied to the finger. The motion of the finger is monitored upon its bending 
up and down. b,c) Smart textile applications. b) Photograph of the sensor in-
tegrated in a textile for monitoring of the arm bending and the output of the 
sensor, while the arm is bent and released at different speed mimicking a fitness 
workout. The magnification figure is the location of the sensor and the magnet. 
c) Photograph of the sensor integrated in a textile to monitor the motion of the 
knee joint upon riding bicycle and the corresponding sensor output signal. The 
magnification figure is the location of the sensor and the magnet. 

Fig. 6. Self-powered stretchable strain sensor 
based on stretchable LM spiral coil for Wireless 
Control. a) Schematics of the wireless control of 
a robotic hand. The sensor is connected to an 
inductive coil. The short-circuit current of the 
sensor changes when the finger is bent, result-
ing in the change of the magnetic field gener-
ated by the inductive coil. The change of the 
magnetic field is measured by the magnetic 
sensor to realize a wireless control of the 
movement of a robotic hand. b) Demonstrator 
of a wireless control of a robotic hand using the 
self-powered stretchable strain sensor.   

S. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.nanoen.2021.106754


Nano Energy 92 (2022) 106754

7

inserted inside the hollow TPE tube to increase the efficiency of the 
energy conversion. The final sensor assembly was encapsulated in PDMS 
(Sylgard 184, Dow Corning, USA), which was prepared in a 10:1 w/w 
ratio (base to curing agent), applied, and then dried at 80 ◦C for 30 min 
in an oven. 

3.3. Mechanical characterization 

Mechanical tests of the TPE tube were carried out by using computer- 
controlled material testing machine (Instron 5943, USA) at the rate of 
5 mm/min (Fig. S2). Stretching experiments were done using a labora-
tory tensile test machine. 

3.4. Microscopy characterization 

The scanning electron microscope (SEM) image and energy disper-
sive spectrometer (EDS) of the LM (Fig. S8 and Fig. S9) and Co-based 
amorphous wires (Fig. S10 and Fig. S11) were taken using a micro-
scope (Sirion200, FEI, USA). 

3.5. Magnetic characterization 

The hysteresis loop (Fig. S12) of the Co-based amorphous wire was 
measured by applying magnetic field along the wire in a vibrating 
sample magnetometer (Lakeshore7410, Lakeshore, USA). When an 
amorphous wire is inserted into the induction coil, the internal magnetic 
permeability of the coil increases significantly. The relationship between 
them can be expressed by the following formula: μ = 2.1 S0

Sx

lx
l0 − 1, where 

S0 and Sx represent the cross-sectional area of the coil (3.591 mm2) and 
amorphous wire, l0 and lx represent the inductance before and after 
inserting the amorphous wire. The frequency dependence of the mag-
netic permeability of the Co-based amorphous wire (Fig. S13) can be 
calculated based on the measurement of the initial inductance of the 
inductive coil and the inductance after insertion into the amorphous 
wire. The inductance was measured using the impedance analyzer 
(4294 A, Agilent, USA). 

3.6. Device characterization 

Electro-mechanical tests were performed at room temperature by 
using a two-probe configuration. The electrical current was provided by 
the current source device (Keithley 237, Keithley Instruments, USA), 
while the voltage was measured by a voltmeter (Keithley 34420A, 
Keithley Instruments, USA). Periodic triangular, sine, and pulse signals 
were generated by a signal generator (AFG 3101C, Tektronix, USA), then 
applied on a shaker (LDS V201, Br üe & Kjær Sound & Vibration Mea-
surement, UK), which brings the sensor into mechanical vibration. The 
magnetic field was applied along the tube/wire axis. The magnetic field 
of the gradient magnetic field was measured by the Gauss meter (PF- 
035, Litian, China). The output voltage of the sensor is measured using 
the oscilloscope (DLM2024, Yokogawa Electric Corporation, Japan). 
The short-circuit current was obtained by dividing the measured open- 
circuit voltage by the corresponding internal resistance. 

3.7. Demonstrators 

The sensor was fixed on skin and clothes with a polyurethane (PU) 
tape (Jiangsu Guangyi Medical Dressing co., Ltd, China). For the case of 
portable demonstrators, we used a permanent magnetic ring (Aoduoke 
Co., Ltd, China; NbFeB alloy). The magnetic field intensity on the surface 
of the magnet was 1 kOe, which results in the field of about 80 Oe at the 
sensor location. The time evolution of the sensor signal was shown on 
the screen of the oscilloscope (DLM2024, Yokogawa Electric Corpora-
tion, Japan). A 750-turn inductive coil (resistance of 26 Ω) was con-
nected to the self-powered sensor to generate wireless signals. The 

change of the magnetic field generated by the inductive coil upon 
deformation of the self-powered sensor was measured by a magnetic 
field sensor (Aichi, MI-CB-1DH, Japan). The output of the magnetic field 
sensor was measured by a voltmeter (Keithley 34420A, Keithley In-
struments, USA). The movement of a robotic hand (ZL-robot, China) was 
controlled by a program written in a software (NI LabVIEW). 

4. Conclusion 

In this work, we demonstrate self-powered stretchable strain sensors 
based on coil-shaped liquid metal stripes that can be used to monitor the 
motion of body parts. The device harvests electrical energy for strain 
sensing electromagnetically, according to the Faraday’s law of electro-
magnetic induction. We provide a set of design rules related to the ge-
ometry of the coil allowing to realize sensors exhibiting ultrahigh 
stretchability (strain = 200%). The latter is facilitated by the high 
elasticity of the TPE tube and the capability of LM to retain its 
outstanding electrical properties even at the extreme stretch condition. 
By performing a detailed study of the impact of the magnetic field 
strength and its spatial distribution, we demonstrate that the harvesting 
performance of the stretchable LM spiral coil can be significantly 
enhanced when the device is exposed to a gradient magnetic field. The 
reliable operation can be achieved in the field of 80 Oe, which is readily 
achievable using small-sized permanent magnetic rings. As those mag-
nets do not require any additional energy for their operation, the sensor 
platform equipped with a tiny permanent magnet is fully portable and 
self-powered. The energy conversion efficiency increases with the in-
crease of the tensile strain and the vibration frequency. Furthermore, the 
use of amorphous Co-based wires inserted in the interior of the hollow 
TPE tubing helps to gain further 33% in the efficiency of the energy 
harvesting. The key advantage of this magnetoelectric energy harvester 
is that it can supply high values of peak current in the range of 2 mA 
which is much higher than the previous work and resulting in a peak 
power provided by our device of about 20 µW. This is sufficient to drive 
even low impedance sensors relying on the conventional low-power 
electronics. We evaluated the performance of our self-powered 
portable sensor for wearable electronics applications. The sensor can 
be readily applied to skin or integrated in a textile and offers high output 
current in response to human motion, such as the bending of finger, arm, 
and leg. For instance, for the case of lifestyle and fitness applications, we 
demonstrate that the sensor can accurately measure the arm swing and 
legs motion upon cycling without any external power supply. Further-
more, we confirmed that the sensor is extremely sensitive to a trembling 
motion of a hand. This is relevant for the realization of self-powered 
portable medical appliances for monitoring of the Parkinson disease. 
The mechanical stability, portability and full autonomous operation of 
our sensor system in everyday settings highlights its applicability as a 
vital component of smart skins and smart textiles for personalized health 
monitoring. Its large short-circuit current can drive an inductive coil to 
realize a wireless signal transmission enabling the control of the 
movement of a robotic hand. This is the very first work where it is 
demonstrated that electromagnetic induction is sufficient to power fully 
portable wearable electronics. In this respect, our work opens up 
exciting perspectives for the community of wearable electronics to 
realize different functional devices, which do not need to rely on wired 
connections and rigid batteries. 
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