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A B S T R A C T   

This work investigated the cavitation erosion performance of two copper alloys in deionized water (DW) and 
artificial seawater (ASW) for 10 h. Specifically, scanning electron microscopy observation was performed on the 
alloys exposed to cavitation erosion for different periods (within 3 h) at the same sites to study the micro-
structural evolution. The results tested in DW showed that the accumulation of the stress at phase boundaries 
caused crack generation in the α phase and severe deformation of the hard phases (κ & Fe(Al,Cu)), resulting in 
the exfoliation of the hard phases. However, the deformation of the hard phase was not observed from the 
samples tested in ASW due to stress corrosion cracking and material dissolution at the phase boundaries.   

1. Introduction 

Cavitation erosion is a type of wear that frequently occurs to the 
components operating in a fluid [1,2]. Generally, cavitation refers to the 
rupture of a fluid caused by a local pressure reduction below saturation 
vapor pressure level, resulting in generation of cavitation bubbles [3]. 
However, cavitation bubbles are unstable and can easily collapse, 
causing the release of shock waves/microjets. As a result, the compo-
nents will suffer from severe erosion by the repeated impacts of the 
shock waves/microjets and it can eventually come to failure [4]. Copper 
alloys, such as nickel aluminum bronze (NAB) and aluminum bronze 
(AB), exhibit good mechanical properties and resistance to wear and 
corrosion [5]. Thus, they are commonly used to manufacture the com-
ponents such as turbines, propellers, and valves, which are frequently 
exposed to cavitation erosion [6]. 

The urgent need for the copper alloys with high resistance to cavi-
tation erosion has encouraged many studies on the failure mechanism of 
the copper alloys subjected to cavitation erosion [7–9]. Many studies 
indicated that the different phases of the copper alloys showed different 
responses to cavitation erosion, and cracks tended to initiate at phase 

boundaries [10–12]. Qin et al. [13] found that heat treatment could 
increase the hard phase content in NAB, thereby improving the cavita-
tion erosion resistance of NAB. Specifically, the cavitation erosion rate of 
the quenched-aged sample was 87.34% lower than that of the original 
sample. Zhang et al. [14] discovered that the synergistic effect between 
cavitation erosion and corrosion in NaCl solution accounted for 41.44% 
of the total mass loss, demonstrating the critical impact of the synergy on 
the cavitation erosion of NAB. Meanwhile, the accelerated erosion rate 
was closely related to the accelerated crack propagation due to corro-
sion. Basumatary et al. [15] demonstrated that cracks could be observed 
under the surface up to a depth of 150 µm after 5 h of cavitation erosion 
in NaCl solution. The research also showed that the α phase around κ 
phases could be preferentially eroded, which would lead to the exposure 
of the κ phases and the formation of cavitation craters. According to the 
effects of microstructures on cavitation erosion behavior, many methods 
have been developed to improve the cavitation erosion resistance of 
copper alloys, such as friction stir processing, laser surface treatment, 
heat treatment, and ultrasonic surface rolling process [13,16–19]. 
However, the failure mechanism of the copper alloys exposed to cavi-
tation erosion is not thoroughly understood, which limits the design of 
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the copper alloys with further enhanced resistance to cavitation erosion. 
At present, the study of the cavitation erosion behavior of materials 

is based on a few techniques, including mass loss, scanning electron 
microscopy (SEM), transmission electron microscope (TEM), electron 
backscatter diffraction (EBSD), and electrochemical analysis [15, 
20–24]. Although the microstructural evolution process of samples 
subjected to cavitation erosion can be inferred from the above methods, 
the derived microstructural evolution process may not be accurate 
because it was based on the results from different positions on eroded 
surfaces. We recently adopted an SEM analysis that observed the same 
position of the eroded sample to explore the failure mechanisms of 
austenitic stainless steels subjected to cavitation erosion, presenting 
pre-existing pores were not the starting point of the failure in austenitic 
stainless steels [25]. In addition, other work also suggested that the SEM 
observation at the same position greatly assisted in investigating the 
cavitation erosion failure mechanism of many materials [3,26,27]. 
Nevertheless, the research on the cavitation erosion performance of the 
copper alloys based on SEM observation at the same position is still 
absent. 

In this study, the cavitation erosion behavior of NAB and AB in 
deionized water (DW) and artificial seawater (ASW) was observed. The 
cumulative volume loss and the rate of volume loss of the NAB and AB 
exposed to cavitation erosion in both media were measured. Further-
more, the microstructure evolution of the NAB and AB during cavitation 
erosion in both media was studied by SEM observation, which could be 
used to guide the design of copper alloys with good cavitation erosion 
resistance. 

2. Experimental 

2.1. Materials and sample preparation 

Both NAB and AB used in this study are commercially available 
(Suzhou Zhongmai Copper Co., Ltd., Jiangsu, China). The samples used 
in this study were cylindrical with a diameter of 20 mm and a thickness 
of 10 mm. The chemical composition of the samples is listed in Table 1. 
All the samples were ground to 2000-grit sandpaper, polished with 2.5 
µm diamond suspension, and finished with 0.05 µm colloid silica, 
respectively. The polished samples were ultrasonic cleaned in deionized 
water, then in ethanol for 10 mins, and finally were dried in a vacuum at 
25 ºC. 

The polished samples were etched for 3 s in the etchant containing 
FeCl3 (5 g), HCl (37 wt%, 2 ml), and 95 ml ethanol [28]. After etching, 
these samples were flushed by DW. Then, they were rinsed in ethanol 
and followed by ultrasonic cleaning in ethanol for 5 mins. Finally, the 
samples were dried in a vacuum at 25 ºC. These etched samples were 
observed by scanning electron microscope (SEM, Regulus 8230, Hitachi 
Ltd, Tokyo, Japan) to identify the phases in the samples. 

2.2. Cavitation erosion tests 

Cavitation erosion tests were carried out using ultrasonic vibratory 
apparatus (GBS-SCT 20 A, Hangzhou Guobiao Ultrasonic Equipment 
Co., Ltd., China) as per a modified version of ASTM G32 [29] resonating 
at 20 kHz with a peak-to-peak amplitude of 50 µm. A detailed schematic 
diagram of this setup can be found in a previous study [30]. The test 
media were ASW (as per ASTM D1141–98 [31]) and DW, whose 

temperature was kept at 25 ± 2 ºC during the test. The ultrasonic horn 
tip was submerged 23 ± 2 mm beneath the liquid level of the test me-
dium, and the sample was placed at a standoff distance of 1 mm from the 
horn tip [30]. The cavitation erosion test lasted for 10 h for each sample, 
and the sample was weighed by a balance with a scale division of 0.1 mg 
at every interval of 1 h, giving the cumulative mass loss. Average cu-
mulative mass loss was calculated based on 3 samples. Then, the average 
cumulative volume loss was figured out by the mass loss and the density 
of the NAB and AB, which are 7.8 g/cm3 and 7.6 g/cm3, respectively. In 
addition, the samples exposed to cavitation erosion for 10 h were 
observed in SEM. 

2.3. SEM characterization for failure mechanism 

The same regions on the samples before and after certain test in-
tervals were observed by SEM, showing the microstructure evolution of 
the NAB and AB samples exposed to cavitation erosion and revealing the 
failure mechanism. The original polished samples for the SEM obser-
vation were slightly etched to expose the phase boundaries before 
cavitation erosion test. 

3. Results and discussion 

3.1. Microstructure characterization 

Fig. 1 shows the microstructure of the NAB and AB after etching. The 
microstructure of the NAB consisted of fcc copper-rich α matrix (Fig. 1a), 
martensitic bcc β’ phases (or retain β phases) (Fig. 1a), and κ phases. The 
κ phases are coordination compounds of Ni-Fe-Al and are sorted into κI, 
κII, κIII, and κIV according to their phase composition, morphology, and 
distribution (Fig. 1b) [32,33]. Specifically, the κI phase showed a large 
rosette-shaped morphology. The κII phase was a spherical particle with a 
typical size of 0.5–1 µm, which was generally found at the boundaries of 
the α and β′ phases. The κIII phase shows a typical lamellar eutectoid 
morphology, and the κIV phase manifests as nano-scale spherical pre-
cipitates. For AB, α matrix, β phases, κ phases, and Fe (Al, Cu) phases 
were observed (Fig. 1c and Fig. 1d). The microstructure of NAB and AB 
observed in this study is identical to the reported literature [11,34,35]. 

3.2. Volume loss during cavitation erosion 

The cavitation erosion resistance of NAB and AB in DW and ASW was 
represented by the plots of cumulative volume loss and volume loss rate 
versus cavitation erosion time (Fig. 2). The cumulative volume loss of all 
the samples increased as the exposure to cavitation erosion was 
extended (Fig. 2a). Meanwhile, the cumulative volume loss in ASW was 
much higher than the sample tested in DW, suggesting that the ASW may 
accelerate material loss during cavitation erosion. This result was 
consistent with the previously reported studies [22,36–38]. It is worth 
noticing that the samples tested in ASW exhibited a sudden increase in 
the volume loss rate at the initial stage (the first hour) of cavitation 
erosion (Fig. 2b). The suddenly increased volume loss rate could attri-
bute to the removal of exposed hard residual phases (caused by surface 
finishing during sample preparation) at the initial stage of cavitation 
erosion, as these residual phases may be weakly bonded to the matrix. 
Apart from the sudden increase in the volume loss rate in the first hour of 
cavitation erosion, all the samples exhibited a typical erosion rate versus 
time curve, clearly presenting incubation, acceleration, and maximum 
rate (or steady-state) periods [39]. As shown in Fig. 2b, the samples 
tested in ASW exited the incubation period after 2 h, while the samples 
tested in DW had a longer incubation period (5 h for NAB and 4 h for 
AB). After the acceleration period, the samples tested in ASW and DW 
entered the steady period at the 6th and 7th hours, respectively. Despite 
the similar plots in Fig. 2, AB exhibited more volume losses and showed 
a greater erosion rate than NAB, either in ASW or DW. Furthermore, the 
result in Fig. 2b also suggested that the ASW shortened the incubation 

Table 1 
Chemical composition of NAB and AB.  

Samples Al (wt 
%) 

Fe (wt 
%) 

Ni (wt 
%) 

Mn 
(wt 
%) 

Si 
(wt 
%) 

C 
(wt 
%) 

Cu 
(wt%) 

NAB 9.24 4.56 4.73 1.31 0.12 0.06 balance 
AB 10.23 4.19 0.03 0.15 0.05 0.03 balance  
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period and brought forward the steady period, indicating a possible 
synergistic effect of cavitation erosion-corrosion in ASW, which may 
accelerate material damage [14]. 

3.3. Surface morphology after cavitation erosion 

The damaged surface of the samples after cavitation erosion in DW 
and ASW solutions for 10 h are shown in Fig. 3. Craters and cracks 
formed on the samples after cavitation erosion in both media, resulting 
in roughened and damaged surfaces (Fig. 3 a1-d1). The magnified SEM 
image in Fig. 3 a2 shows fatigue striations of the NAB tested in DW, 
which are also commonly observed in other materials subjected to 
cavitation erosion [40]. Cracks were also seen in Fig. 3 a2. In contrast, 
fatigue striation was not observed from the NAB tested in ASW (Fig. 3 
b2). Meanwhile, for the NAB tested in ASW, the cracks generated in the 
crater or nearby crater were shorter and more than that of the NAB in 
DW (Fig. 3 a2 & b2), inferring that cracks were more easily formed in 

ASW. The rapid connection of cracks separated the material into small 
pieces, accelerating material spalling and leaving a roughened surface. 
Thus, the NAB exposed to cavitation erosion in ASW exhibited a rough 
surface and almost no fatigue striations (Fig. 3 b2). For AB, the results 
were similar. Cracks and craters were observed in the AB either tested in 
ASW or DW (Fig. 3c-d), while fatigue striations only appeared on the 
sample tested in DW (Fig. 3c2). The above results show that the failure 
mechanisms of the samples under cavitation erosion and cavitation 
erosion-corrosion conditions were completely different, which could be 
attributed to the synergistic effect of corrosion and cavitation erosion 
[41]. 

3.4. Microstructure evolution of the hard phases during cavitation erosion 

Hard phases (including κI-IV phases and Fe(Al, Cu) phase) can pro-
vide dispersion strengthening to copper alloys and also play an essential 
role in the cavitation erosion performance of copper alloys [13,35]. 

Fig. 1. The SEM images of (a, b) NAB and (c, d) AB.  

Fig. 2. The cumulative volume loss (a) and volume loss rate (b) versus cavitation time for the NAB and AB exposed to cavitation erosion in DW and ASW solutions.  

Y. Tian et al.                                                                                                                                                                                                                                     
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Observing the evolution of the hard phases and the surrounding α phase 
of copper alloys during cavitation erosion process could provide a better 
understanding of the cavitation erosion failure mechanism of copper 
alloys. Fig. 4 shows the spalling process of the κ phase in NAB. Grain 
boundary (highlighted by the red dotted lines in Fig. 4b) sliding 
occurred after cavitation erosion for 40 mins. Meanwhile, the grains 
near the boundary (highlighted by the green dotted line) were pressed, 
and the cracks (highlighted by the yellow line) formed near the κ phase. 
As exposed to cavitation erosion further, the grain boundary continued 
slipping to the right. The grain near the grain boundary was gradually 
squeezed and spalled off (Fig. 4d). Meantime, the cracks extended 
around the κ phase. After cavitation erosion for 140 mins, the κ phase 
spalled off (Fig. 4f), forming a crater with a rough surface. 

For the NAB in ASW solution, however, cracks formed after 

cavitation erosion for only 20 mins (indicated by the yellow dotted lines 
in Fig. 5b), and the number of the cracks that appeared in NAB after 
cavitation erosion in ASW is more than in DW. Meanwhile, most of the 
cracks were located around the α/κ phase boundaries. After cavitation 
erosion for 40 mins, the κ phases, including κІ, κII, and κIII, spalled off, 
forming a crater with a smooth surface (Fig. 5c). Moreover, the cracks 
propagated along the α grain boundaries or around the κ phases. Then, 
the κ phases were surrounded by cracks. As the cavitation erosion time 
increased (Fig. 5d-5f), more materials (mainly the κ phases) spalled off, 
and more craters were generated (highlighted by green dotted boxes). In 
addition, compared with the NAB tested in DW, cracks tended to develop 
around the κ phase in ASW and were wider. 

AB and NAB are inevitably affected by the inner stress generated 
during casting when manufactured as a propeller used in the marine 

Fig. 3. Surface morphology of NAB and AB after cavitation erosion for 10 h in DW and ASW: (a1, a2) NAB in DW solution, (b1, b2) NAB in ASW solution, (c1, c2) AB 
in DW solution, and (d1, d2) AB in ASW solution. 
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environment [42,43]. Meanwhile, collapse of cavitation bubbles also 
repeatedly impacts the material surface via stress pulses. These stress 
pulses can be up to GPa [44] and can cause stress accumulation in the 
material, which plays a vital role in the formation and propagation of 
cracks [45,46]. Obviously, the grain boundary sliding that occurred in 
the NAB during cavitation erosion in DW suggested glide and piling up 
of dislocations taking place in the interior of grains [47]. In addition, the 
κ phase can block dislocation movement and lead to stress accumulated 
near the κ phase, so the cracks formed around the κ phase [48]. The 
impact of high-speed micro-jet caused cracks to propagate along the κ 

phase boundary, resulting in the κ phase failure (Fig. 5c-5f). Conversely, 
no apparent phase boundary sliding was observed from the NAB surface 
after cavitation erosion in ASW. Meanwhile, most cracks were in the α 
phase around the κ phases, developed after cavitation erosion for 
20 mins (Fig. 5b). This suggests the cracks could easily formed around 
the κ phases under the coupling effect of the corrosion attack and 
cavitation impact. Literature reported that the threshold stress level 
resulting in the stress corrosion cracking is below the yield strength in 
the nitrite solution [49], indicating the stress corrosion cracking easily 
formed under the coupling effect of applied stress and corrosive 

Fig. 4. The microstructural evolution of the NAB at the α/κ interface during cavitation erosion in DW for (a) 0 min, (b) 40 mins, (c) 60 mins, (d) 100 mins, (e) 
120 mins, and (f) 140 mins. The grain boundary is highlighted by the red dotted line, the yellow dotted line highlights the crack, and the crater formed by the spalling 
of material is highlighted by the green dotted box. 

Fig. 5. The microstructural evolution of the NAB at α/κ interface during cavitation erosion in ASW for (a) 0 min, (b) 20 mins, (c) 40 mins, (d) 60 mins, (e) 100 mins, 
and (f) 140 mins. The yellow dotted line highlights the crack, and the crater formed by the spalling of material is highlighted by the green dotted box. 
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medium. Stress corrosion cracking tends to form in the case of the low 
stress below the yield strength, and in this case, no slipping is generated 
by plastic deformation. Similar results were obtained in this study, 
which showed the phase boundary sliding was not observed from the 
NAB exposed to cavitation erosion in ASW, possibly attributed to the low 
threshold of stress corrosion cracking in ASW. Under the impact of 
microjets/shockwaves, the cracks formed at low-stress level, which 
could be up at short exposure to cavitation erosion. Therefore, more 
cracks were observed from the surface of the NAB in ASW than in DW. As 
shown in Fig. 5d, wide cracks formed around the κ phase (highlighted by 
the yellow dotted line) and a smooth interface formed, which may be 
caused by chemical dissolution of the α matrix in ASW [50]. 

Fig. 6 displays the microstructure evolution of the AB after cavitation 
erosion in DW. Cracks formed at the α/Fe(Al, Cu) interface (indicated by 
the yellow dotted line in Fig. 6b), and deformation (highlighted by the 
red arrows) was also observed. The deformation was aggravated with 
increased cavitation erosion time (Fig. 6c). When the time was up to 
120 mins, the α matrix near the α/Fe(Al, Cu) interface spalled off, 
resulting in the formation of craters (highlighted by green dotted boxes 
in Fig. 6d). The cracks and the craters expanded along with prolonged 
time. The remained α matrix in the Fe(Al, Cu) phase was observed 
(Fig. 6f). However, no apparent grain boundary sliding was observed 
from the AB in ASW (Fig. 7). During the cavitation erosion in ASW, 
cracks and craters formed more easily (indicated by the yellow dotted 
lines and the green dotted boxes in Fig. 7). Meanwhile, the crater sur-
faces are smooth, and the α matrix was utterly detached from the Fe(Al, 
Cu) phase. The results above were in line with what was illustrated in 
Fig. 5. These results further evidenced that crack initiation can be more 
accessible in ASW than in DW. Therefore, the material damage usually 
preferentially occurred at the phase boundary in ASW. 

Fig. 8 shows the microstructure evolution of the κ phase during 
cavitation erosion process in DW. It is worth noticing that the α matrix at 
the grain boundary (or twin boundary) of the α matrix was firstly 
damaged (highlighted by the green dotted box in Fig. 8d), while the κ 
phase was not (the white dotted boxes). With the increase of cavitation 
erosion time, the α matrix around the κ phase gradually spalled off 
(Fig. 8e). Finally, the κ phase was removed from the material, and once 
the κ phase was eroded, the α matrix was quickly worn (Fig. 8f). It shows 
that the α matrix was more easily damaged than the hard phases. 
However, the phase boundary at the α/κ interfaces gradually dissolved 

during cavitation erosion in ASW (Fig. 9b & c), resulting in the exposure 
of the κ phase. Subsequently, the α matrix continued to be dissolved and 
impacted (Fig. 9d & e). As a result, the α phase was severely damaged 
(Fig. 9d & e). After more exposure to cavitation erosion, the κ phase was 
removed from the α phase, resulting in the formation of a crater. This 
study showed that the corrosive ASW preferentially attacked at the 
phase boundary, in agreement with the literature [11]. 

According to Figs. 4, 6, and 8, the hard phases (κ phases and Fe(Al, 
Cu) phase) could undergo plastic deformation despite their relatively 
high hardness. The deformation index (Di) is used to investigate the 
severity of the deformation, which is defined by the quotient of the 
aspect ratio of the hard phase after cavitation erosion divided by its 
original aspect ratio, and the result is shown in Fig. 10. It should be 
noted that the data in Fig. 10 were based on the observation of the hard 
phases in Figs. 4 and 8. According to Fig. 10, the Di values of the samples 
decreased obviously with the cavitation erosion time increasing when 
the samples were tested in DW. The deformation degree of the κ phase is 
inversely proportional to the Di value, which illustrates that the defor-
mation degree of the κ phase increases with the test time. Generally, 
deformation is positively correlated to accumulated stress [51,52]. 
Interestingly, similar phenomena were not observed for the samples 
during the cavitation erosion test in ASW solution. With the increase of 
test time in ASW solution, the Di values first increased slightly and then 
remained relatively stable. Specifically, the Di value observed in Fig. 5 
increased slightly from 1 (0 min) to 1.16 (40 mins), and then kept 
relatively stable during the subsequent cavitation erosion process. At the 
early stage of cavitation erosion in ASW solution, the dissolution of the 
α-κ phase boundary led to the gradual exposure of the κ phase [53], so 
the Di values of the samples increased slightly. As the cavitation erosion 
continued, the Di value remained relatively stable, indicating that no 
additional stress was exerted on the κ phase during the subsequent 
cavitation erosion process. Similar results were also observed from the 
Fe(Al, Cu) phase during the cavitation erosion process in DW (Fig. 6) and 
ASW solutions (Fig. 7). In DW solution, the Fe(Al, Cu) phase deformed 
seriously with the prolongation of cavitation erosion time (Fig. 6), but 
deformation was not observed in ASW solution (Fig. 7). 

The α phase of the copper alloys has a typical fcc lattice structure and 
its hardness is lower than the hard phases (including the κ and the Fe(Al, 
Cu) phases) [54]. In general, the α phase has lower strain rate sensitivity 
and higher plastic deformation ability than the hard phases [14], which 

Fig. 6. The microstructural evolution of the AB at the α/Fe(Al, Cu) interface during cavitation erosion process in DW solution for (a) 0 min, (b) 40 mins, (c) 60 mins, 
(d) 120 mins, (e) 140 mins, and (f) 180 mins. The crack is highlighted by the yellow dotted line, and the crater formed by the spalling of material is highlighted by the 
green dotted box. The red arrow points out the deformation position. Fe(Al,Cu) phase is highlighted by the red dotted box. 
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means the α phase has better work hardening ability than the hard 
phases. After a short period of cavitation erosion, the α phase generates 
many dislocations in response to the action of microjets and shock waves 
[55]. However, these generated dislocations are unstable, and some 
dislocations are prone to slip during the subsequent cavitation erosion 
process [56]. These moving dislocations can be easily blocked by phase 
boundaries due to the high hardness of the hard phase, resulting in stress 
accumulation at the phase boundaries [29]. After more exposure to 
cavitation erosion, the accumulated stress causes severe deformation of 
the hard phase, and many cracks were also generated around the hard 

phase during the deformation process. After further exposure to cavi-
tation erosion, the hard phase with the α phase can spall off from the 
sample surface, resulting in the formation of a cavitation crater. Forming 
a cavitation crater causes some of the accumulated stress to be released. 
However, the stress around the cavitation crater will accumulate again 
as the cavitation erosion time increases, which results in more mass loss 
and the formation of a larger cavitation crater [25]. Studies that worked 
with SEM observation on irons found the graphite-matrix interfaces and 
ferrite-austenite phase boundaries easily damaged at the early stage of 
cavitation erosion [57,58], which is similar to the results observed in 

Fig. 7. The microstructural evolution of the AB at the α/Fe(Al, Cu) interface during cavitation erosion process in ASW solution for (a) 0 min, (b) 30 mins, (c) 50 mins, 
(d) 90 mins, (e) 130 mins, and (f) 150 mins. The crack is highlighted by the yellow dotted line, and the crater formed by the spalling of material is highlighted by the 
green dotted box. Fe(Al, Cu) phase is highlighted by the red dotted box. 

Fig. 8. The microstructural evolution of the AB at the α/κ interface during cavitation erosion in DW for (a) 0 min, (b) 30 mins, (c) 50 mins, (d) 90 mins, (e) 130 mins, 
and (f) 150 mins. The κ phase is highlighted by the white dotted box. The grain boundary is highlighted by the red dotted line, and the crater formed by the spalling 
of material is highlighted by the green dotted box. 
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this study. 
For the copper alloys immersed in ASW, the potential difference 

between different phases can be regarded as the driving force for se-
lective phase corrosion [59,60]. The phase boundary atoms preferen-
tially dissolved out due to their higher energy, which results in a series of 
reactions. Although the corrosion process of the copper alloys in ASW is 

complex, the current recognized process is the dissolution of aluminium 
and copper occurring at the phase boundary at first [61,62]: 

Al + 4Cl- → AlCl4
- + 3e- (1)  

Cu + Cl- → CuCl + e- (2)  

CuCl + Cl- → CuCl2
- (3) 

As the AlCl-4, CuCl, and CuCl-2 are unstable, Al2O3 and Cu2O are 
formed subsequently through the following reactions [63–65]: 

2AlCl-4 + 3H2O → Al2O3 + 6H+ + 8Cl- (4)  

2CuCl + H2O → Cu2O + 2H+ + 2Cl- (5)  

2CuCl2
- + H2O → Cu2O + 4Cl- + 2H+ (6) 

Finally, the Cu2O could be further oxidized to Cu(OH)2 and 
Cu2(OH)3Cl, according to the following Eqs. (7) - (8): 

Cu2O + 3H2O → 2Cu(OH)2 + 2H+ + 2e- (7)  

Cu2O + Cl- + 2H2O → Cu2(OH)3Cl + H+ + 2e- (8) 

As a result, a corrosion product film can be formed on the surface of 
the copper alloys, and the thickness can reach 900–1000 nm in a static 
corrosive environment [66]. The corrosion product film is composed of 
Al2O3 adjacent to the base metal and copper-containing corrosion 
products (Cu(OH)2 and Cu2(OH)3Cl) in the outer regions [67]. However, 
it is difficult to form a complete passivation film on the surface of the 
copper alloys under cavitation erosion-corrosion conditions, which is 
attributed to the continuous destruction on the surface by cavitation 
erosion. Due to the rapid destruction of the passivation film, the 

Fig. 9. The microstructural evolution of the AB at the α/κ interface during cavitation erosion in ASW solution for (a) 0 min, (b) 30 mins, (c) 50 mins, (d) 70 mins, (e) 
90 mins, and (f) 110 mins. The craters formed by the spalling of material are highlighted by the green dotted box and the red dotted box. 

Fig. 10. Deformation index (Di) of the NAB and AB under different test con-
ditions. Di = (Rt

xy) / (R0
xy), where the Rt

xy is the length to width ratio of the κ 
phase at the tth min. The x and y denote the length and width, which are marked 
in Figs. 4 and 8, respectively. 
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dissolution rate of the phase boundary atoms is much higher than that in 
a static condition, which results in the phase boundary of the hard phase 
being exposed entirely after a short period of cavitation erosion [68]. In 
addition, the dislocations generated during the cavitation erosion pro-
cess can lead to the accumulation of stress on the surface of the samples, 
while the corrosive ASW can induce the release of the stress, which leads 
to the generation of cracks [25,69]. To illustrate the effect of crack 
generation in the α phase on the phase boundary stress accumulation 
process, critical deformation resistance of phase boundary (τcp) was 
introduced [14]:  

τcp = D * (Δτ)2 * (2 G*b)− 1                                                             (9) 

D is the diameter of the α phase, G and b are the elastic modulus and 
Burgers vectors, which are constant values for a fixed lattice structure 
material. Δτ is the resolved shear stress of single dislocation, derived 
from the external force exerted by the cavitation microjets and shock 
waves. Assuming that the critical deformation resistance of the phase 
boundary (τcp) required to cause the deformation of the phase boundary 
is constant, great external input force (Δτ) is required if the grain size 
(D) is small, meaning that the deformation of the phase boundary is 
more difficult in small-sized α phase. Due to the corrosive ASW inducing 
the release of stress, many cracks are generated [25], which is similar to 
the effect of D value reduction. Therefore, the higher the crack density in 

the α phase, the smaller the stress applied to the phase boundary, 
resulting in less deformation of the hard phase. In addition, the atoms in 
the phase boundary are continuously dissolved due to phase selective 
corrosion, which causes the cracks at the phase boundary to widen 
continuously with the extension of test time. The dissolution of the 
phase boundary causes the α phase and the hard phase to come out of 
contact, which means that the α phase needs to deform across the cracks 
before exerting force on the hard phase. The generation of many cracks 
and the dissolution of the phase boundary may partly explain the un-
observed deformation of the hard phase during cavitation erosion in 
ASW. 

3.5. Summary of the failure mechanisms 

A schematic is shown in Fig. 11 demonstrating the failure mecha-
nisms of copper alloys during the cavitation erosion process in DW and 
ASW. Before cavitation erosion in DW, no crack could be seen on the 
sample surface (Figs. 11a-1). After a short exposure to cavitation 
erosion, some dislocations were generated on the surface of the sample. 
As the cavitation erosion test continues, some dislocations would slip to 
the phase boundary, causing a slight deformation of the hard phase 
(Figs. 11b-1). After more exposure to cavitation erosion, more stress 
accumulated at phase boundaries, resulting in severe deformation of the 
hard phase and the generation of some cracks (Figs. 11c-1). Eventually, 

Fig. 11. Schematic diagrams showing the cavitation erosion failure mechanisms of the hard phase of copper alloys in DW (− 1) and ASW (− 2) solutions.  
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the continuous stress build-up led to the enlargement of the cracks 
around the hard phase, which eventually results in the exfoliation of the 
hard phase with some α phase and the generation of a cavitation crater 
(Figs. 11d-1). When the copper alloys were tested in ASW for a short 
time, the continued dissolution of the phase boundary caused partial 
exposure of the hard phase and cracks were observed due to the release 
of stress caused by the corrosive ASW. (Figs. 11b-2). As the cavitation 
erosion test continued, the cracks further increased, and the phase 
boundary was further dissolved (Figs. 11c-2). Eventually, the hard phase 
would be easily peeled off, forming a cavitation crater (Figs. 11d-2). 
Compared with the samples tested in DW, the hard phase on the surface 
of the samples tested in ASW was easier to peel off, and cracks were more 
likely to be generated. Since the hard phase plays the role of dispersion 
strengthening in copper alloys [32], it is obviously not conducive for 
copper alloys to resist cavitation erosion damage if the hard phases are 
peeled off easily. In addition, the cracks reduce the strength of the 
copper alloys, resulting in a reduced ability to resist cavitation erosion 
damage. At the same time, the crack is also an important nucleation site 
for cavitation, which makes the crack more vulnerable to cavitation 
microjet attack [70]. Therefore, the mass loss of copper alloys increases 
significantly undre cavitation erosion-corrosion conditions (Fig. 2). 

4. Conclusions 

This study investigated the cavitation erosion failure mechanisms of 
nickel aluminum bronze (NAB) and aluminum bronze (AB) in deionized 
water (DW) and artificial seawater (ASW) by SEM observation. It can be 
concluded as follows: 

(1) At the early stage of cavitation erosion in DW, the hard phase 
could hinder the deformation of the α phase. This resulted in the local 
stress accumulation in the surrounding α phase, leading to the genera-
tion of cracks as the starting site of cavitation erosion. 

(2) With the prolongation of cavitation erosion time in DW, the 
continuous accumulation of stress at the phase boundary caused severe 
deformation of the hard phase and the generation of many cracks in the 
surrounding α phase, which eventually led to the exfoliation of the 
second and some α phase. 

(3) Phase selective corrosion could cause the dissolution of the phase 
boundary at the beginning of cavitation erosion in ASW, resulting in a 
decrease in the binding force between the hard phase and the α phase 
and making it easier to peel off. 

(4) Corrosive ASW would induce the release of stress on the surface 
of the samples, which could lead to the generation of more cracks and 
the formation of more initial sites of cavitation erosion. As a result, the 
samples showed lower cavitation erosion resistance in ASW than that in 
DW. 

(5) During the cavitation erosion test in ASW, no deformation of the 
hard phase was observed, which can be attributed to the continuous 
dissolution of the phase boundary and the release of stress due to the 
massive generation of cracks in the α phase. 

(6) Improving the phase selective corrosion resistance of copper al-
loys may help enhance the cavitation erosion resistance in corrosive 
media. 
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