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•  Background and Aims  Pelota (Pelo) are evolutionarily conserved genes reported to be involved in ribosome 
rescue, cell cycle control and meiotic cell division. However, there is little known about their function in plants. 
The aim of this study was to elucidate the function of an ethylmethane sulphonate (EMS)-derived mutation of a 
Pelo-like gene in rice (named Ospelo).
•  Methods  A dysfunctional mutant was used to characterize the function of OsPelo. Analyses of its expression 
and sub-cellular localization were performed. The whole-genome transcriptomic change in leaves of Ospelo was 
also investigated by RNA sequencing.
•  Key Results  The Ospelo mutant showed defects in root system development and spotted leaves at early seedling 
stages. Map-based cloning revealed that the mutation occurred in the putative Pelo gene. OsPelo was found to be 
expressed in various tissues throughout the plant, and the protein was located in mitochondria. Defence responses 
were induced in the Ospelo mutant, as shown by enhanced resistance to the bacterial pathogen Xanthomonas 
oryzae pv. oryzae, coupled with upregulation of three pathogenesis-related marker genes. In addition, whole-
genome transcriptome analysis showed that OsPelo was significantly associated with a number of biological 
processes, including translation, metabolism and biotic stress response. Detailed analysis showed that activation 
of a number of innate immunity-related genes might be responsible for the enhanced disease resistance in the 
Ospelo mutant.
•  Conclusions  These results demonstrate that OsPelo positively regulates root development while its loss of 
function enhances pathogen resistance by pre-activation of defence responses in rice.
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INTRODUCTION

Pelota (PELO) is an evolutionarily conserved protein and has been 
identified in a number of species, including Drosophila (Eberhart 
and Wasserman, 1995), archaebacteria (Ragan et al., 1996), yeast 
(Davis and Engebrecht, 1998), Arabidopsis thaliana (Caryl et al., 
2000), human (Shamsadin et al., 2000), mouse (Shamsadin et al., 
2002) and tomato (Lapidot et al., 2015). The PELO proteins con-
tain 347–395 amino acid residues and RNA-binding domains 
similar to that found in the family members of the eukaryotic re-
lease factor 1 (eRF1) family members, which play roles in termin-
ation of protein synthesis (Davis and Engebrecht, 1998).

The study in Drosophila first identified that the cell cycle is 
arrested during the meiotic G2/M transition phase in germline 
cells of Pelo male homozygotes, while only mitotic division is 
affected during oogenesis (Eberhart and Wasserman, 1995). In 
addition, the eyes of Pelo homozygotes are smaller than those 
of their heterozygous siblings. Further study revealed a critical 
role for PELO proteins in regulating self-renewal of germline 
stem cells (GSCs) by repressing the differentiation pathway (Xi 
et al., 2005). Disruption of the balance between self-renewal and 
differentiation of GSCs impaired the fertility of loss-of-function 

pelo mutant females. A similar role for PELO protein in meiotic 
and mitotic division was also found in Saccharomyces cerevi-
siae, where the disruption Dom34, the orthologue gene of Pelo, 
resulted in growth retardation and defective sporulation (Davis 
and Engebrecht, 1998). In mice, disruption of the Pelo gene 
caused early embryonic lethality and cell cycle defects (Adham 
et al., 2003). Further analysis found that PELO mediated gono-
cyte maturation and maintenance of spermatogonial stem cells 
in mouse testes (Raju et al., 2015). PELO is also found to regu-
late extraembryonic endoderm development and epidermal 
differentiation, and to inhibit tumour progression and invasion 
(Nyamsuren et al., 2014; Pedersen et al., 2014; Elkenani et al., 
2016). In addition, PELO is involved in high efficiency viral rep-
lication (Wu et al., 2014), and regulates a resistance reaction to 
begomovirus in tomato (Lapidot et al., 2015).

Extensive studies have been conducted in yeast to characterize 
the function of PELO at the molecular level. The PELO-coding 
orthologue Dom34 together with its interacting partner Hbs1 par-
ticipate in an RNA quality control mechanism called no-go decay 
(NGD) for the recycling of stalled ribosomes (Doma and Parker, 
2006; Shoemaker and Green, 2011; Guydosh and Green, 2014). 
The structure of the DOM34–HBS1 complex is similar to that 
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of eRF1 and eRF3, but Dom34 does not have motifs for codon 
recognition and peptide release (Chen et al., 2010; Becker et al., 
2011). It was proposed that the DOM34–HBS1 complex binds to 
the ribosomal A site to promote dissociation of ribosome subu-
nits (Shoemaker et al., 2010). In addition to the RNA quality con-
trol in the NGD pathway, DOM34–HBS1 is also important for 
non-stop decay (NSD), i.e. decay of non-functional 18S rRNAs 
and mRNAs with premature stop codons (Cole et al., 2009; Tsuboi 
et al., 2012; Saito et al., 2013). The DOM34–HBS1 complex also 
mediates dissociation of inactive 80S ribosomes to promote the 
restart of translation after stress (van den Elzen et al., 2014). The 
roles of DOM34/PELO in mRNA quality control are conserved 
in Drosophila and human (Ikeuchi et al., 2016; Hashimoto et al., 
2017). The PELO–HBS1 complex is also involved in transposon 
silencing in the Drosophila germline (Yang et al., 2015). Recently, 
studies showed that defects in GTPBP2, a PELO-binding partner 
in mammals, resulted in ribosome stalling in a tRNAArg (UCU) 
mutant background and the death of mouse neurons (Ishimura 
et al., 2014; Kirmizitas et al., 2014).

Little is yet known about the overall function of Pelo genes 
in plants. In this study, a Pelo-deficient rice mutant was isolated 
from an ethylmethane sulphonate (EMS)-mutagenized library. 
We describe a root development defect, a spotted-leaf pheno-
type and enhanced pathogen resistance for Pelo null rice.

MATERIALS AND METHODS

Plant materials and growth conditions

The rice mutant Ospelo was isolated from an EMS-mutagenized 
rice (Oryza sativa L. indica, ‘Kasalath’) mutant library. 
Hydroponic experiments were conducted in normal rice cul-
ture solution with the pH adjusted to 5.5 (Zhu et al., 2012). In 
all hydroponic experiments, plants were grown in a greenhouse 
with a 12 h light (30 °C)/12 h dark (22 °C) cycle (16 000 lux) 
and a humidity of 70 %.

Acetocarmine and 5-ethynyl-2’-deoxyuridine (EdU) staining

Primary root tips of 4-day-old wild type (WT) and Ospelo 
plants were stained with 1 % acetocarmine solution for 10 min. 
After washing with 45 % acetic acid solution, they were 
mounted on glass slides and examined with a stereo microscope 
(Leica MZ95). EdU staining was conducted using an EdU kit 
(C10350, Click-iT EdU Alexa Fluor 488 HCS assay; Invitrogen) 
according to the manufacturer’s instruction. Roots of 4-day-old 
WT and Ospelo plants were immersed in 20 mm EdU solu-
tion for 2 h and then fixed for 30 min in 3.7 % formaldehyde 
solution in phosphate buffer (pH 7.2) with 0.1 % Triton X-100. 
After that they were incubated with EdU detection cocktail for 
30 min and examined with the green fluorescent protein (GFP) 
channel on a confocal laser-scanning microscope (Zeiss LSM 
510, Jena, Germany). More than ten root samples of each geno-
type were examined, and the experiment was repeated twice.

Trypan blue staining

Trypan blue staining was performed on fresh leaves as pre-
viously described (Yin et al., 2000). In brief, leaf samples were 

submerged in lactic acid–phenol–trypan blue (LPTB) solution 
[2.5 mg mL–1 trypan blue, 25 % (w/v) lactic acid, 23 % water-
saturated phenol and 25 % glycerol in H2O] at 30 °C for 12 h. 
The LPTB solution was then replaced with a chloral hydrate 
solution (50 g in 20 mL of H2O) for destaining. After multiple 
changes of chloral hydrate solution for 4 d, leaf samples were 
washed with H2O and mounted on glass slides before being 
examined with a stereo microscope (Leica MZ95). More than 
ten leaf samples were examined for each genotype, and the ex-
periment was repeated three times.

Pollen activity staining assay

Spikelets about to flower from the WT and Ospelo were 
chosen for examination. After carefully opening the hull, 
anthers were placed in several drops of 1 % I2–KI solution on 
glass slides and crumbled to release pollens. Then they were 
examined with a light microscope (Nikon eclipse 80i). Samples 
from more than five plants of each genotype were examined, 
and the experiment was repeated twice.

Histological observation

Root tips from 4-day-old plants were fixed overnight at 4 °C 
in 2.5 % glutaraldehyde in 0.1 m sodium phosphate buffer, pH 
7.2, and washed three times for 30 min in the same buffer. The 
samples were then refixed in OsO4 for 4 h at room tempera-
ture and washed for 30 min in the same buffer. Samples were 
dehydrated in a gradient ethanol, embedded in pure Spurr resin 
and polymerized overnight at 70 °C. Semi-thin sections (2 μm 
thick) were made using diamond knives on a power Tome XL 
microtome (RMC-Boeckeler Instruments, Tucson, AZ, USA) 
and stained with 0.1 % methylene blue for 3–5 min at 70 °C. 
The samples were rinsed with distilled water and visualized 
with a microscope (Nikon 90i, Japan).

Mapping and cloning of OsPelo

A mapping population was generated from crosses be-
tween the homozygous Ospelo mutant and japonica variety 
Nipponbare. A total of 30 and 538 short root plants from the 
F2 population were used for primary and fine mapping of 
OsPelo, respectively. The OsPelo gene was localized to a re-
gion of 411 kb between the sequence-tagged site (STS) markers 
STS1 and STS2 on chromosome 4. Primers used are listed in 
Supplementary Data Table S1. The OsPelo gene was selected 
from 52 putative protein-coding genes as one of the candidate 
genes. To identify the mutation site, genes were amplified by 
PCR from the genomic DNA of both WT and Ospelo plants and 
used for Sanger sequencing analysis.

Construction of vectors and plant transformation

The coding region of OsPelo was PCR amplified and put 
into the pUCM-T vector (Takara). After sequencing confirm-
ation, the fragment was excised from the pUCM-T vector by 
BamHI and PstI digestion and ligated into the corresponding 
site of pCAMBIA1300. A  2264  bp promoter of OsPelo was 
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obtained by PCR and inserted into the HindIII/BamHI site in 
front of the OsPelo coding region to drive its expression. The 
promoter was also put into the HindIII/BamHI site of vector 
pCAMBIA1300NH-GUS to create a transcriptional fusion of 
the OsPelo promoter and the β-glucuronidase (GUS) coding 
sequence, OsPelop::GUS. The above constructs were used for 
Agrobacterium tumefaciens-mediated rice transformation of 
the WT or Ospelo as described (Chen et al., 2003).

Histochemical analysis and GUS assay

Histochemical GUS staining was performed as previously 
described (Ding et  al., 2015). Transgenic plant samples and 
freehand cross-section samples were incubated with GUS 
staining solution (100 mmol L–1 NaH2PO4 buffer pH 7.0, 0.5 % 
Triton X-100, 0.5 mg mL–1 X-Gluc and 20 % methanol) over-
night at 37 °C. Tissues were subsequently rinsed and mounted 
on slides, and photographed using a stereo microscope (Leica 
MZ95, Nussloch, Germany).

Sub-cellular localization of OsPELO

The full-length coding sequence of OsPelo with the elimi-
nated stop codon was inserted in-frame before the cod-
ing sequence of a soluble modified GFP (smGFP4). The 
OsPELO–GFP fusion-coding sequence was subcloned into 
the binary vector 35S-pCAMBIA1301. The resulting con-
struct was sequenced to verify in-frame fusion and used for 
transient transformation of onion epidermis using a biolistic 
PDS-1000/He particle delivery system (Bio-Rad, Hercules, 
CA, USA). Alternatice oxidase (AOX)–red fluorescent pro-
tein (RFP) located to the mitochondria was co-transformed 
as a mitochondrial marker. The GFP and RFP were visualized 
using a confocal laser-scanning microscope (Zeiss LSM 510). 
The experiment was repeated twice.

Determination of resistance to bacterial blight in Ospelo

Three races of Xanthomonas oryzae pv. oryzae (Xoo) were 
used for evaluation of bacterial blight resistance. The Philippines 
races PXO71, PXO99 and PXO145 were kindly provided by 
Dr Jie Zhou of the Institute of Virology and Biotechnology, 
Zhejiang Academy of Agricultural Sciences, China. New fully 
expanded leaves of ten independent WT and Ospelo plants at 
the maximum tillering stage were inoculated for each race of 
Xoo using the clipping leaf method (Kauffman et  al., 1973). 
The lesion length on inoculated plants was measured 3 weeks 
after inoculation.

Quantitative real-time PCR (qRT-PCR) analysis

RNA was extracted from three biological replicates of leaf 
samples of 20-day-old WT and Ospelo plants using RNAiso 
plus (Takara). Three technical replicates were performed for 
each sample. The first-strand cDNA was synthesized from total 
RNA using Superscript II (Invitrogen, Carlsbad, CA, USA) and 

used as the qRT-PCR template. Real-time PCR analysis was 
performed using a Roche Lightcycler480 real-time PCR system 
with SYBR Premix Ex Taq (Takara). Primers used are listed 
in Supplementary Data Table S1. The Ubiquitin gene (LOC_
Os03g13170) in rice was used as a reference gene.

Transcriptome sequencing

Total RNA was extracted from leaves of 20-day-old WT 
and Ospelo plants under normal conditions using the RNeasy 
Plant Mini Kit (Qiagen, USA). Three biological replicates 
for each genotype were collected. RNA was quantified using 
the Nanodrop-2000 (ThermoFisher, USA) and RNA quality 
was then examined using a 2100 Bioanalyzer (Agilent 
Technologies, USA). High-quality RNA samples for li-
brary construction were selected based on the 260/280 nm 
ratio and RNA integrity number (RIN) above 2.0 and 7.0, 
respectively. Sequencing libraries were prepared using the 
TruSeq Stranded mRNA LTSample Prep Kit (Illumina, San 
Diego, CA, USA) according to the manufacturer’s instruc-
tions. Libraries were subjected to 125 cycles of paired-end 
sequencing with the Illumina HiSeq2500 system according 
to the manufacturer’s instructions. The raw sequencing data 
have been uploaded to the SRA (Sequence Read Archive; 
https://www.ncbi.nlm.nih.gov/sra) database (accession no. 
SRP117240).

Differentially expressed gene analysis

Raw reads were first processed using in-house Perl 
scripts. In this step, clean reads were obtained by removing 
reads containing adaptor, reads containing ploy-N and low-
quality reads (the number of bases with quality value ≤20 
is more than 35). The retained high-quality reads, i.e. clean 
reads, were then analysed by the TopHat–Cufflinks pipeline 
(Trapnell et  al., 2012). Briefly, clean reads were mapped 
to the rice genome (MSU version 7, http://rice.plantbiol-
ogy.msu.edu/) using TopHat. Cufflinks was then used for 
transcriptome assembly and assessment of the FPKM (frag-
ments per kilobase of transcript per million mapped reads) 
value. Counts of mapped reads to genes were obtained 
with HTSeq (http://www-huber.embl.de/users/anders/
HTSeq/doc/overview.html) and differentially expressed 
genes (DEGs) were determined using DESeq2 (http://bio-
conductor.org/packages/release/bioc/html/DESeq2.html) 
by the Negative Binomial Distribution test (Love et  al., 
2014; Anders et  al., 2015). Genes with a false discovery 
rate (FDR)-adjusted P-value <0.05 were assigned as DEGs. 
Gene Ontology (GO) annotation was conducted by query-
ing Swiss-Prot (http://www.uniprot.org) with transcripts of 
DEGs and enrichment analysis was performed by the hyper-
geometric distribution test using R with a threshold FDR-
adjusted P-value <0.01. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis was 
conducted by PlantGSEA with a threshold FDR-adjusted 
P-value <0.01 (Yi et al., 2013). The functional categoriza-
tion of DEGs was conducted by MapMan (Thimm et  al., 
2004).
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RESULTS

The rice Ospelo mutant showed root and leaf growth defects

A mutant showing short roots and spotted leaves was iso-
lated from an EMS-mutagenized rice mutant library (Oryza 
sativa L. indica ‘Kasalath’). The mutant was designated as 
Ospelo, which will be described later on (Fig.  1A). After 
growth in culture solution for 7 d, the primary root length 

of Ospelo (8.91 ± 1.06 cm) was only 57.9 % of that of the 
WT (15.38  ±  0.88  cm) (Fig.  1B). Moreover, the length of 
adventitious roots and lateral roots of Ospelo was also sig-
nificantly shorter than that of those of the WT (Fig.  1B), 
while shoot height was slightly shorter than that of the WT 
(Fig. 1B).

To investigate the cause of the short root phenotype of 
Ospelo at a cellular level, root longitudinal section ana-
lysis was conducted. It showed that the radial organization 
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patterns and the quiescent centre (QC) of the stem cell niche 
in Ospelo were comparable with those of the WT (Fig. 1C). 
The cell length of maturation zones of Ospelo was also 
similar to that in the WT (Fig.  1C). To determine the root 
meristem activity of Ospelo, 4-day-old seedlings were cul-
tured for 2 h in the presence of the thymidine analogue EdU, 
and in situ incorporation of EdU into DNA during active 
DNA synthesis in the root tip was visualized (Kotogány 
et  al., 2010). Compared with the WT, Ospelo had reduced 
levels of EdU labelling in the root meristem (Fig.  1D, E). 
Consistent with this, the traditional acetocarmine staining 
also showed that the meristematic region in Ospelo was 
reduced compared with the WT (Fig. 1F, G). Taken together, 
these results suggested that the meristematic activity in the 
Ospelo root is compromised.

Moreover, lesion-mimic spots appeared on Ospelo leaves 
after being grown in culture solution for about 20 d. The spot-
ted-leaf phenotype became more severe as plants grew and 
expanded into whole leaves of 60-day-old Ospelo (Fig.  1H). 
In order to examine the occurrence of cell death or irrevers-
ible membrane damage, leaves of the WT and Ospelo were 
stained with trypan blue. As expected, there were clearly dyed 
blue spots on Ospelo leaves, while no detectable staining was 
observed on WT leaves (Fig. 1I).

Critical roles of OsPelo in development and fertility

The mature stage development and fertility of Ospelo were 
severely impaired (Fig. 2A, B). The plant height, tiller number 
and seed setting rate of Ospelo were all significantly decreased 
compared with the WT (Fig.  2C). However, the 1000-grain 
weight of Ospelo was similar to that of the WT (data not 
shown). To find the cause of the fertility defect, reproductive 
organs of Ospelo were further examined. There was no signifi-
cant difference in pistils of Ospelo and the WT (Fig. 2D), and 
a successful cross using Ospelo as the female for the mapping 
population also confirmed its normal female fertility (data not 
shown). However, anthers of Ospelo were found to be pale 
compared with the healthy yellow anthers of the WT, indicating 
a severe defect in pollen development (Fig. 2E). Further stain-
ing analysis showed that pollen development of Ospelo was 
dysfunctional and their fertility was dramatically lower than in 
the WT (Fig. 2F).

Map-based cloning of OsPelo

To identify the mutated gene, an F2 population was 
developed by crossing the Ospelo mutant with Nipponbare 
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(japonica). The F1 seedlings displayed the WT phenotype and 
their F2 progeny showed segregation of WT and Ospelo phe-
notypes at a ratio close to 3:1 (257:81, χ2 = 0.32, P < 0.05), 
indicating that the Ospelo phenotype was controlled by a 
single recessive nuclear gene. The OsPelo locus was first 
mapped to chromosome 4 between simple sequence repeat 
(SSR) markers RM3217 and RM567 using 30 F2 mutant 
plants (Fig. 3A). The OsPelo gene was further mapped to a 
411 kb region between two new STS markers STS1 and STS2 
using 538 F2 mutant plants (Fig.  3A). Fifty-two open read-
ing frames (ORFs) were predicted in this region (http://rice.
plantbiology.msu.edu/). Sanger sequencing analysis for both 
the WT and Ospelo mutant identified one single-base inser-
tion after 1630  bp from the start codon on the fourth exon 
of LOC_Os04g56480 (Fig.  3A). The insertion introduced a 
premature stop codon and putatively yielded a peptide with 
89 amino acid residues (Fig. 3B). LOC_Os04g56480 encodes 
rice Pelota, which is the homologue of Pelota in Drosophila 
(Eberhart and Wasserman, 1995). Therefore, we named it 
OsPelo. The OsPelo gene is 7945 bp in length, and contains 
15 exons and 14 introns. The protein-coding region of OsPelo 
is 1137 bp and encodes a 378 amino acid protein. The pro-
tein structure is consistent with the annotation generated by 
pfam (pfam.xfam.org), with three conserved eRF1 domains 
(Fig.  3B). A  search in the rice genome with the full-length 

OsPELO protein sequence using BLASTp showed that it is a 
single-copy gene.

PELO is a conserved protein involved in the mRNA NGD 
pathway based on its structural similarity to tRNA (Kobayashi 
et  al., 2010). The putative tertiary structure of OsPELO was 
predicted using the online SWISS-MODEL server (https://
swissmodel.expasy.org) (Biasini et al., 2014). As expected, its 
structure showed high similarity to those of human and yeast 
PELOs, with three conserved domains arranged in an L-shape 
(Fig. 3C). This further confirms that OsPELO is the rice homo-
logue of PELO.

Functional complementation test of Ospelo

To confirm that the single nucleotide insertion in OsPelo is 
responsible for the mutant phenotype, complementation ana-
lysis was conducted using A. tumefaciens-mediated transform-
ation. The protein-coding region of OsPelo was cloned into a 
binary vector driven by its 2264 bp native promoter and used for 
transformation of Ospelo. More than 20 independent transgenic 
lines were obtained. The short root and spotted-leaf phenotype 
was restored in all the positive transformants (Fig. 3D). These 
results demonstrate that the single base insertion in OsPelo 
causes the short root and spotted-leaf phenotype in Ospelo.
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cate untranslated regions. The arrowhead shows the site of the single-base insertion after the nucleotide 1630 bp downstream of ATG. (B) Predicted domains of 
OsPELO by the pfam database (pfam.xfam.org). The arrowhead indicates the insertion within the eRF1_1 domain, which results in the production of a truncated 
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other two ribbon diagrams are published crystal structures of PELO from human (SWISS-MODEL Template Library ID: 5LZW.78) and Dom34 from yeast (PDB 
ID: 2VGM). (D) Complementation analysis of Ospelo. The root and leaf phenotype of Ospelo was completely recovered by transformation of OsPelo driven by its 
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Expression pattern and sub-cellular localization analysis of 
OsPelo

To determine the tissue-specific expression pattern of 
OsPelo, a 2264 bp native promoter was fused to the GUS re-
porter gene. This chimeric gene cassette was used to transform 
WT plants via the A.  tumefaciens-mediated transformation 
method. Histochemical staining for GUS activity in T2 plants 
showed that OsPelo was ubiquitously expressed in plant organs, 
including the primary root tip, tip and base of lateral roots, leaf 
vein and guard cells, stem and auricle, ligule, lemma, anther, 
stigma, glume, peduncle, pollen and paddle (Fig. 4A–H).

Furthermore, online prediction tools were employed to pre-
dict the sub-cellular localization of OsPELO. A mitochondrial 
localization was suggested with a high probability by MitoProt 

II (https://ihg.gsf.de/ihg/mitoprot.html; Claros et al., 1996) and 
WoLF PSORT (https://wolfpsort.hgc.jp; Horton et  al., 2007) 
and a lower probability by TargetP (http://www.cbs.dtu.dk/
services/TargetP; Emanuelsson et  al., 2000). To examine the 
sub-cellular localization of OsPELO experimentally, a chimeric 
fusion gene of the coding region of OsPelo and GFP under the 
control of the 35S promoter was constructed and delivered into 
onion epidermal cells for transient expression. Fluorescence 
analysis showed that the fusion protein co-localized with a 
co-transformed mitochondrial marker (Fig. 4I), indicating that 
OsPELO is located in mitochondria.

Enhanced disease resistance in Ospelo

The occurrence of necrotic spots in Ospelo resembles the 
hypersensitive response (HR) after infection by pathogens. 
A number of spotted-leaf mutants showed enhanced resistance 
to bacterial and/or fungal pathogens (Fekih et al., 2015; Wang 
et  al., 2017). To examine whether Ospelo also gains disease 
resistance, WT and Ospelo plants were inoculated with three 
races of Xoo, the causal agent of rice bacterial blight. The 
Ospelo plants exhibited significantly enhanced resistance to all 
tested Xoo strains (PXO71, PXO99 and PXO145) compared 
with the WT (Fig. 5A, B).

Defence response genes were commonly induced during 
lesion development in a number of rice spotted-leaf mutants 
(Fekih et al., 2015; Wang et al., 2015). Therefore, we detected 
expression of three pathogenesis-related (PR) marker genes 
(PR1b, PR10 and PO-C1) associated with defence response. 
The results showed that all these PR marker genes were highly 
upregulated in Ospelo (Fig. 5C).

Whole-genome expression analysis of Ospelo

PELO is a conserved key member of the RNA surveil-
lance pathway and known to be involved in ribosome rescue, 
spermatogenesis, cell cycle control and meiotic cell division. 
However, almost all this knowledgs was from studies in yeast 
and mammals, with little information in plants. To gain further 
insight into the in planta function of OsPelo, transcriptome 
sequencing analysis of WT and Ospelo plants was conducted 
using RNA sequencing (RNA-seq). As lesion-mimic spots 
started to emerge on 20-day-old Ospelo leaves, this stage was 
selected for the profiling analysis. Three replicates of each 
genotype were used, yielding six libraries in total. Each of 
these libraries generated >20 million 125 bp paired-end reads 
after quality control, and about 86 % of them were uniquely 
mapped onto the rice reference genome (Supplementary Data 
Table S2).

A total of 4990 DEGs were identified with a cut-off of the 
FDR-adjusted P-value <0.05. Among them, 2914 DEGs showed 
higher expression in Ospelo than in the WT, and were termed 
upregulated genes, while 2076 DEGs showed lower expres-
sion in Ospelo than in the WT and were termed downregulated 
genes (Fig. 6A;  Supplementary Data Table S3). Among these 
DEGs, more than half of upregulated and downregulated genes 
showed a fold change <2 (Fig. 6B). This is in line with what 
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Fig. 4.  Expression pattern of OsPelo and sub-cellular localization of OsPELO. 
(A–H) Histochemical staining analysis of expression of the OsPelo promoter–
GUS fusion in various tissues. GUS signals were detected in the primary root 
tip (A), the tip and base of lateral roots (B), leaf vein and guard cells (C), stem 
and auricle (D), ligule (E), young spikelet (F), pollen (G) and paddle (H). Scale 
bars = 0.2 mm in (A–F, H), 10 µm in (G). (I) OsPELO targets GFP to mitochon-
dria in transiently transformed onion epidermal cells. The AOX–RFP is used as 

the mitochondrial marker. Scale bars = 10 µm.
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was expected when considering that the leaf samples selected 
were at the very early stage of phenotypic change.

To analyse further the effects of OsPelo mutation on the tran-
scriptomes, GO classification analysis of the up- and downreg-
ulated DEGs was conducted (Fig. 6C–E; Supplementary Data 
Table S4). Within the category of biological process, upregu-
lated genes were largely associated with response to stress, 
secondary metabolic process and cell death, indicating that 
the stress response in Ospelo was activated (Fig.  6C). Genes 
involved in post-embryonic development, reproduction and 
embryo development were significantly enriched among down-
regulated genes, which was consistent with the defects in root 
development and fertility in Ospelo. Moreover, genes involved 
in translation, metabolic process, transport, photosynthesis 
and biosynthesis were also enriched in downregulated genes. 
Within the category of molecular function, genes involved in 
catalytic activity, kinase activity and oxygen binding activity 
were enriched among upregulated genes, while genes involved 
in transcription factor activity and RNA binding were specific-
ally enriched among downregulated genes (Fig. 6D). In terms 
of cellular component, only the plasma membrane was signifi-
cantly enriched among upregulated genes, while downregu-
lated genes showed association with the plastid, mitochondrion, 
cytosol, nucleolus and cytoskeleton, suggesting a broad range 
of functional repression of organelles in Ospelo (Fig. 6E).

To explore further the biological pathways in which 
OsPelo may be involved, we performed KEGG pathway en-
richment analysis for the DEGs between Ospelo and the WT. 
Twenty-three pathways were significantly enriched for upregu-
lated genes and 53 for downregulated genes (Supplementary 
Data Table  S5). Among the top 15 enriched pathways, the 
highly enriched upregulated pathways were mainly related to 
plant–pathogen interaction, protein processing, carbohydrate 

metabolism (amino sugar and nucleotide sugar metabolism, 
glycolysis/gluconeogenesis), amino acid metabolism (phenyl-
alanine and glutathione metabolism), lipid metabolism (fatty 
acid metabolism, fatty acid elongation, biosynthesis of unsatur-
ated fatty acids, α-linolenic acid metabolism, peroxisome) and 
secondary metabolism (biosynthesis of secondary metabolites, 
phenylpropanoid and flavonoid) (Fig. 7A). This was consistent 
with the enhanced pathogen resistance in Ospelo (Fig. 5A, B). 
The highly enriched pathways associated with down-regulated 
genes were mainly related to translation (aminoacyl-tRNA bio-
synthesis, RNA transport, ribosome biogenesis in eukaryotes), 
mismatch repair and primary metabolism including nucleo-
tides, carbohydrates and amino acids (Fig. 7B).

In total, 30 DEGs were found to be involved in the aminoacyl-
tRNA biosynthesis pathway, among which 28 DEGs responsible 
for synthesis of most aminoacyl-tRNAs were significantly down-
regulated in Ospelo (Fig.  7C; Supplementary Data Table  S6). 
Further MapMan classification of DEGs also showed that a 
number of gene bins in the RNA–protein synthesis pathway 
were greatly downregulated, including RNA transcription and 
processing, protein amino acid activation, and protein synthesis 
initiation, elongation and release (Fig. 7D). These results were 
consistent with the putative role of OsPelo in stalled ribosome 
release in the mRNA decay pathway, whose dysfunction would 
result in the repression of translation.

Among the enriched KEGG pathways for upregulated genes, 
there were several biotic stress-related pathways, including 
plant–pathogen interaction, α-linolenic acid metabolism and 
phenylpropanoid biosynthesis (Fig. 7A). The α-linolenic acid 
metabolism pathway is responsible for jasmonic acid (JA) 
synthesis, and the phenylpropanoid biosynthesis pathway pro-
duces lignin. JA is one of major signalling pathways in plant 
disease resistance (Nahar et al., 2011; Xie et al., 2011). Lignin 
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Fig. 5.  Detection of bacterial blight pathogen resistance and expression of resistance-related genes. (A) Reactions of the WT and Ospelo to three Xanthomonas 
oryzae pv. oryzae (Xoo) isolates. Scale bar = 2 cm. (B) Lesion lengths of the WT and Ospelo produced by three Xoo isolates measured 3 weeks after infection. 
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stage. Data are means ± s.d. of three biological replicates (Student’s t-test: *P < 0.01).
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is a non-degradable mechanical barrier for most micro-organ-
isms, and an increase in lignification is a common response to 
pathogen attack to block parasite invasion and reduce the sus-
ceptibility of hosts (Moura et al., 2010). Consistent with these 
findings, MapMan analysis clearly showed that the synthesis 
pathways for JA and lignin were both significantly activated 
(Fig. 7E, F).

DISCUSSION

In the present study, a rice mutant, Ospelo, was isolated from an 
EMS-mutagenized population of rice (indica, ‘Kasalath’). The 
mutation caused loss of function of Pelota, a rice homologue 
of a key component in the NGD pathway. The mutant showed 

defects in root system development and spotted leaves from the 
early seedling stage, semi-dwarfness and defective pollen de-
velopment (Figs  1 and 2). Functional complementation with 
WT OsPelo rescued the mutant phenotype observed in Ospelo 
(Fig.  3). We further conducted transcriptome sequencing of 
Ospelo and the WT, and found that DEGs were significantly 
associated with a number of biological processes, including 
translation, metabolism and biotic stress response.

OsPELO belongs to a family of evolutionarily conserved 
proteins called PELO, with their primary function in the regu-
lation of translation and cell cycle progression. In Drosophila, 
Pelo has been shown to be required to control meiotic cell cycle 
progression and self-renewal and division of GSCs in the ovary 
(Eberhart and Wasserman, 1995; Xi et  al., 2005). The yeast 
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homologue of PELO, DOM34, functions in protein translation 
to promote G1 progression and differentiation, and the dom34 
mutants grow slowly and have defects in meiosis and sporu-
lation (Davis and Engebrecht, 1998). In mice, disruption of 
the Pelo gene results in early embryonic lethality and defects 
in cell cycle progression (Adham et al., 2003). In rice Ospelo 
mutants, the root meristem activity was repressed, and pol-
len fertility and seed setting rate were dramatically decreased, 
suggesting a conserved role for OsPelo in cell cycle control 
through translation. Genes involved in translation, including 
aminoacyl-tRNA biosynthesis, protein amino acid initiation, 
elongation and release, were significantly enriched among the 
downregulated genes, suggesting the repression of translation 
in Ospelo (Fig.  7C, D;  Supplementary Data Table  S5). The 
mitochondrial localization of OsPELO suggests its possible 
involvement in the translation process taking place in mito-
chondria, one of the only two organelles containing their own 
genomes in cells (Fig. 4I). It has been reported that the PELO 
proteins are located in the cytoplasm of Drosophila (Xi et al., 
2005) and in the cytoskeleton of mammalian cells (Burnicka-
Turek et al., 2010). The difference in sub-cellular localization 
of PELO proteins among different species might suggest their 
functional divergence during evolution.

The cell cycle is controlled by a complex machinery composed 
of cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors 
(CKIs), E2F transcription factors and a number of other pro-
teins (Inzé and Veylder, 2006; Guo et al., 2007). Among them, 
the A-type CDKs (CDKAs) are essential for G1 to S and G2 to 
M transition, and the B-type CDKs (CDKBs) show maximum 
activity at the G2 to M transition and the M-phase (De Veylder 
et al., 2007; Endo et al., 2012). D-type cyclins (CYCDs) mainly 
regulate the G1 to S transition through association with CDKs. 
In addition, the binding of CKI proteins could also adjust CDK 
activity (Polyn et  al., 2015). The overexpression of one CKI 
gene, KRP1, could result in reduced cell production during 
leaf development and seed filling, and disturbed production of 
endosperm cells (Barrôco et  al., 2006). Consistent with this, 
several key regulatory components of the cell cycle were found 
to be downregulated, including two cyclin genes (CycD3;1 and 
CycF2;3), seven CDK genes (CDKA;1, CDKB1;1, CDKB2;1, 
CDKD;1, CKL1, CKL6 and CKL7) and one E2F transcription 
factor gene (E2F2) (Supplementary Data Table S7). Moreover, 
KRP1 was found to be upregulated. These data suggested that 
the cell cycle progression in Ospelo was repressed, which might 
explain the observed short root phenotype.

Defence response might be activated without pathogen attack 
in spotted-leaf mutants, and contribute to enhanced resistance 
to pathogen infection (Wang et al., 2017). Recently PELO has 
been reported to be involved in general antiviral activity in 
Drosophila and resistance to begomovirus in tomato (Wu et al., 
2014; Lapidot et al., 2015). Mutation or silencing of Pelo simi-
larly resulted in virus resistance in both Drosophila and tomato, 
and the critical role of PELO in highly efficiently translating viral 
proteins of infective viruses was suggested. The loss-of-function 
OsPelo mutation results in HR-like lesion spots on leaves and 

enhanced resistance to bacterial blight (Fig. 5A, B). The expres-
sion of three PR marker genes, PR1b, PR10 and PO-C1, was 
significantly upregulated in Ospelo during the development of 
lesion spots (Fig. 5C), indicating activation of PR genes and their 
possible roles in the enhanced pathogen resistance. Furthermore, 
whole-genome transcriptome analysis showed that there were 40 
PR genes in the DEGs and all but one of them were significantly 
upregulated in Ospelo (Supplementary Data Table S8).

Salicylic acid (SA) and JA are two conserved positive regula-
tors of defence response in plants and are proposed to activate 
a common pathogen defence system in rice (Tamaoki et  al., 
2013; Berens et al., 2017). SA-mediated redox status changes 
control the nucleocytoplasmic localization of NPR1, and it 
interacts with TGA transcription factors upon localization to 
the nucleus and activates SA-responsive genes encoding PR 
proteins (Dong, 2004; Koornneef and Pieterse, 2008). Analysis 
of DEGs in Ospelo identified seven SA biosynthesis-related 
PAL genes, two NPR genes (NPR1 and NPR4), four TGA tran-
scription factor genes, 20 JA biosynthesis-associated genes and 
three JAZ genes (Supplementary DataTable S9). All but three of 
them were upregulated in Ospelo, suggesting that OsPelo plays 
a negative role in both SA and JA biosynthesis and/or signal-
ling and its loss of function might cause higher accumulation 
of SA and JA, thus enhancing plant defence against pathogens. 
Moreover, WRKY transcription factors are also proposed to be 
critical components in SA-dependent defence responses and 
control PR gene expression (Koornneef and Pieterse, 2008; Wei 
et al., 2013). In our study, there were 37 WRKY genes showing 
differential expression in Ospelo compared with the WT, and 
34 of them were upregulated (Supplementary Data Table S10). 
Among them there were a number of WRKYs which have been 
reported to regulate pathogen resistance in rice (Liu et al., 2005; 
Chujo et al., 2007; Qiu et al., 2007; Shimono et al., 2007; Peng 
et al., 2008; Chujo et al., 2013; Yokotani et al., 2013).

The KEGG enrichment analysis indicated the constitutive ac-
tivation of the plant–pathogen interaction pathway (Fig.  7A). 
A total of 41 genes in the pathway were found to be differentially 
expressed in Ospelo compared with the WT, and all of them ex-
cept two CNGC genes were upregulated (Supplementary Data 
Table S11). These genes participated in pathogen-associated mo-
lecular patterning (PAMP)-triggered immunity (PTI) and effector-
triggered immunity (ETI) pathways in innate immunity. Within 
the PTI pathway, there were two CNGC genes (CNGC12 and 
CNGC10), one CAM gene (Cam1-1), 15 CML genes and four 
CPK genes (CPK10, CPK20, CPK21 and CPK23) involved in 
calcium signalling; two Rboh genes (Rboh5 and Rboh7) involved 
in generation of reactive oxygen species (ROS) and NOS1 for ni-
tric oxide production; and two PR1 genes as antimicrobial com-
ponents. Within the ETI pathway, RIN4, RPS2, SGT1 and three 
RPM1 genes were involved in recognition of avirulent effectors; 
and there were two HSP90 genes for HR. The loss-of-function mu-
tation of CNGC in arabidopsis and barley resulted in high levels of 
SA, constitutive expression of PR genes and enhanced resistance 
to pathogens (Clough et al., 2000; Balagué et al., 2003; Rostoks 
et al., 2006; Kaplan et al., 2007). Overexpression of OsCPK10 

Fig. 7.  Pathway enrichment and MapMan analysis of DEGs between the WT and Ospelo. (A, B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment of up- (A) and downregulated (B) DEGs. (C) Mapping of DEGs associated with the KEGG aminoacyl-tRNA biosynthesis pathway. Boxes labelled 
with blue colour indicate downregulated DEGs between the WT and Ospelo. (D–F) MapMan analysis of DEGs associated with RNA–protein synthesis (D), lignin 

synthesis (E) and JA synthesis (F).
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and OsCPK20 in rice activated both SA- and JA-dependent de-
fence responses and enhanced the resistance of transgenic plants 
to pathogens (Fu et al., 2013, 2014). These results showed that 
both the PTI- and ETI-related signalling components were signifi-
cantly upregulated in Ospelo, suggesting that the loss of function 
of OsPelo resulted in activation of both PTI and ETI, reinforce-
ment of cell walls and induction of PR proteins, thus enhancing 
resistance of Ospelo to pathogens.

In conclusion, we report herein that OsPelo functions in de-
velopment and defence in rice. We characterized the roles of 
this rice homologue of PELO protein, and confirmed that loss 
of function of OsPelo resulted in defects in root system devel-
opment and enhanced pathogen resistance in rice.
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